Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows

نویسندگان

  • Ibrahim Muter
  • S. Ilker Birbil
  • Kerem Bülbül
چکیده

Abstract: In this paper, we develop a simultaneous column-and-row generation algorithm that could be applied to a general class of large-scale linear programming problems. These problems typically arise in the context of linear programming formulations with exponentially many variables. The defining property for these formulations is a set of linking constraints, which are either too many to be included in the formulation directly, or the full set of linking constraints can only be identified, if all variables are generated explicitly. Due to this dependence between columns and rows, we refer to this class of linear programs as problems with column-dependent-rows. To solve these problems, we need to be able to generate both columns and rows on-the-fly within an efficient solution approach. We emphasize that the generated rows are structural constraints and distinguish our work from the branch-and-cut-and-price framework. We first characterize the underlying assumptions for the proposed column-and-row generation algorithm. These assumptions are general enough and cover all problems with columndependent-rows studied in the literature up until now to the best of our knowledge. We then introduce in detail a set of pricing subproblems, which are used within the proposed column-and-row generation algorithm. This is followed by a formal discussion on the optimality of the algorithm. To illustrate our approach, the paper is concluded by applying the proposed framework to the multi-stage cutting stock and the quadratic set covering problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benders decomposition and column-and-row generation for solving large-scale linear programs with column-dependent-rows

In a recent work, Muter et al. (2013a) identified and characterized a general class of linear programming (LP) problems known as problems with column-dependent-rows (CDR-problems). These LPs feature two sets of constraints with mutually exclusive groups of variables in addition to a set of structural linking constraints, in which variables from both groups appear together. In a typical CDR-prob...

متن کامل

A Row-and-Column Generation Method to a Batch Machine Scheduling Problem

This paper studies a batch machine scheduling problem in which decisions on grouping jobs into batches and scheduling batches on parallel machines are jointly made. To address the problem, we model it as two-stage set-partitioning (TSSP) type formulation with exponential number of rows and columns. To find solutions, we propose a row-and-column generation method. The proposed method starts with...

متن کامل

Linear preservers of g-row and g-column majorization on M_{n,m}

Let A and B be n × m matrices. The matrix B is said to be g-row majorized (respectively g-column majorized) by A, if every row (respectively column) of B, is g-majorized by the corresponding row (respectively column) of A. In this paper all kinds of g-majorization are studied on Mn,m, and the possible structure of their linear preservers will be found. Also all linear operators T : Mn,m ---> Mn...

متن کامل

Inference with Transposable Data: Modeling the Effects of Row and Column Correlations

We consider the problem of large-scale inference on the row or column variables of data in the form of a matrix. Many of these data matrices are transposable meaning that neither the row variables nor the column variables can be considered independent instances. An example of this scenario is detecting significant genes in microarrays when the samples may be dependent due to latent variables or...

متن کامل

Improved Column Generation for Highly Degenerate Master Problems

Branch-and-price, that is, column generation embedded into a branch-and-bound scheme is established as a leading solution methodology for many large-scale integer programming programs. The column generation approach is a method used for solving linear problems with a huge number of variables. This classical decomposition method (Dantzig and Wolfe 1960, Gilmore and Gomory 1961, 1963) well exploi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 142  شماره 

صفحات  -

تاریخ انتشار 2013